Generalized Pyrolysis Model for Combustible Solids

2007 Annual Fire Conference
National Institute of Standards and Technology
Gaithersburg, MD
April 4, 2007

Chris Lautenberger Carlos Fernandez-Pello

University of California, Berkeley Dept. of Mechanical Engineering Berkeley, CA 94720 USA

Research funded by NASA Graduate Student Researcher Program

Motivation – Big Picture

- Reliable prediction of largescale fire development
- Predictive capabilities for solid-phase pyrolysis lags gas-phase
 - "Practical" or "real-world" materials poorly understood
 - Many models specific to one class of materials

Objectives

- 1) Develop generalized pyrolysis model
 - Thermoplastic, charring, intumescent, smolder
 - Practical/real-world materials

- 2) Develop technique to estimate model input parameters from existing laboratory tests
 - Fire tests (Cone Calorimeter, FPA)
 - Thermal analysis (TGA, DSC)

Presentation Outline

- Motivation
- Objectives
- Generalized pyrolysis model description
- Generalized pyrolysis model application
 - Oxidative pyrolysis of white pine
 - Thermal pyrolysis of polypropylene
 - Heating and swelling of intumescent coating
- Concluding remarks

Generalized Pyrolysis Model

- Decomposing solid treated as coupled gaseous and condensed phases
- 1D conservation equations solved for
 - Gas and solid mass
 - Gas and solid species
 - Gas and solid energy
 - Gas momentum (Darcy's law)
- Volume change handled by variable grid spacing

Surface regression

Generalized Pyrolysis Model

- User may specify any number of
 - Distinct layers
 - Solid and gaseous species
 - Solid and gaseous reactions
- Physics include
 - Volume change (swelling/surface regression)
 - In-depth radiation absorption, radiative transfer across pores
 - Darcy flow through porous media (pressure solver)
 - Penetration of ambient oxygen into decomposing solid and its effect on gaseous and solid reactions

White Pine Oxidative Pyrolysis – Experimental Data

- Ohlemiller, Kashiwagi, Werner *C*+*F* v69 (1987)
 - 3.8 cm cubes irradiated @ 40 kW/m² (natural convection)
 - O₂ ranged from 0% to 21% by volume

White Pine Oxidative Pyrolysis – Numerical Simulation

Modeling approach

- 4 solid species: wet wood, dry wood, char, ash
- 4 solid reactions: drying, dry wood pyrolysis, dry wood oxidation, char oxidation
- 1 gas-phase reaction: oxidation of pyrolysate
- 5 gaseous species: N₂, O₂, H₂O, pyrolysate, products

The challenge

- At least <u>40</u> unknown model parameters must be specified!
- The solution
 - Parameters estimated from experimentally measured MLR and T using genetic algorithm-based optimization

White Pine – Comparison of Measured and Modeled T

 Modeled temperatures match experimental data quite well for pyrolysis under N₂:

White Pine Oxidative Pyrolysis – Predictions/Measurements in N₂

• Mass loss rate under N_2 :

White Pine Oxidative Pyrolysis – Model Predictions

 Model captures experimentally-observed increase in MLR and surface T with increasing O₂ concentration

White Pine Oxidative Pyrolysis – Predictions/Measurements in Air

• Surface temperature and MLR (21% O_2)

Polypropylene Pyrolysis – Effect of Thickness

Heating and Swelling of an Intumescent Coating

- Experiment Griffin *et al.*, *JFS* v23 (2005)
 - Cone Calorimeter
 - 2.7 mm intumescent coating applied over steel substrate
 - Irradiated at 90 kW/m² (T_{subs} and δ measured)
 - Thermogravimetric analysis (TGA)

- Modeling approach
 - 5 solid species
 - 3 condensed-phase reactions, including intumescence
 - 26 model parameters determined by genetic algorithm optimization

Intumescent Coating – Model Results (TGA)

10 °C/min

15 °C/min

30 °C/min

Intumescent Coating – Model Results (Cone Calorimeter)

Concluding Remarks

- Pyrolysis model simulates well multiple materials
- Material property estimation via genetic algorithm optimization seems to "work" even for search spaces with 20+ adjustable parameters

Future work

- Additional materials (composites, charring polymers)
- Extension to 2D (anisotropy, transition to flaming)
- Predicting real world flame spread and fire growth via coupling to CFD code